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Abstract: We propose an active vision system for the acquisition of internal 
object representations. The core of the approach is an agent which learns  
goal-directed action patterns depending on the perceived environment via 
reinforcement learning. The user supervision is restricted to the definition of 
this goal in the form of a reward function. We demonstrate this approach by 
means of learning a strategy to scan an object. The agent moves a virtual 
camera around an object and is able to adapt her scan path dynamically to 
different conditions of the environment such as different objects and different 
goals of the data acquisition. The purpose of the acquisition which we consider 
here is the view-based reconstruction of non-acquired views. The scan pattern 
obtained after the learned path has stabilised allows a better reconstruction of 
unfamiliar views than random scan paths. 
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1 Introduction 

The visual appearance of objects is a concern of computer vision as well as computer 
graphics. Both fields of research utilise internal representations of objects. One main 
topic of computer graphics is the generation of 3D models from real world objects for 
geometric modelling, and one of the major problems in computer vision is the recognition 
of objects from single views. The internal object representations that have to be acquired 
can be 3D model-based or 2D view-based. Until now one of the problems concerning 
object acquisition has been its separation from the processing of the acquired data, 
especially from the specific goal of a future application. This often implies that the 
acquired data are either insufficient or redundant for the application. Thus, there is an 
increasing demand for learning methods which allow the extraction of only the relevant 
information with respect to a defined goal. Among the principles of learning, agents to be 
striven for are the learning of goal-directed behaviour, adaptivity to the environment, and 
as little supervision by the user as possible.  

In this paper, we propose a learning scheme which follows these principles. An agent 
autonomously adapts to her environment, resulting in a learned action pattern that 
depends on the environment and the goal of the action only.  

We implement these principles considering the learning of view-based object 
representations as examples. Our agent simulates a scanner which moves a camera 
around an object. The action pattern to be learned is the scan path on the view sphere 
which is optimal with respect to the object and the goal of the data acquisition.  
The learned scan path allows for the generation of a sparse, view-based object 
representation in the form of some selected key views of the path. The goal of the agent is 
to find that scan path which best enables the view-based reconstruction of non-acquired 
views from key views of the scan path. The only user interaction consists in the definition 
of this goal in the form of a reward signal which guides the learning process.  
The appropriate behaviour emerges autonomously then by interaction of the agent  
(the moving camera) with the environment (the object). Thus, different scan paths  
would result for different object classes and for different goals of the data acquisition 
(such as learning 3D models vs. 2D view-based representations). 

The core of our approach is a reinforcement module. Its principles are briefly 
sketched. An agent interacts with the environment by perception and action. In an 
interaction step the agent receives information on the current state of the environment as 
input via perception. A state is defined by the current camera parameters and information 
on the object learned so far. Then the agent chooses an action according to a policy 
function, i.e., the camera is moved to the next view and the representation learned up to 
this time is updated. The action is carried out and changes the state of the environment. 
The agent is able to adapt her behaviour dynamically to certain conditions. For this 
purpose the agent receives direct feedback for the last action by a reward signal which 
supports the intended goal (here the reconstruction of unfamiliar views). The behaviour 
of the agent should maximise the long term sum of the reward signals. Thus, the agent 
learns her behaviour by systematic trial-and-error over several scanning episodes. 
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2 Related work 

Recently more attention is paid to the importance of joining object learning and action.  
In Fitzpatrick et al. (2003) action-specific movement patterns of objects are statistically 
learned while actions such as pushing are carried out on them. But the acquisition phase 
(i.e., the learning or training) is still disconnected from the application without feedback 
between perception and action. 

Another field of research related to this work is denoted by the term viewpoint 
planning. It describes a bunch of techniques used to determine viewpoint distributions of 
objects or scenes which are optimal with respect to the information necessary for a 
specific task. In computer vision these techniques are not utilised at the level of object 
acquisition up to now, rather they are employed first on the level of recognition  
(Callari and Ferrie, 1996). 

The concept of key-frames is another issue related to the acquisition of objects.  
In Wallraven and Bülthoff (2001) key-frames are chosen from an image sequence to 
represent an object, but still with a given scan path and a given strategy for their choice. 
Other systems exist which are more adaptive. They try to adjust the scan path to the 
object or the application (Wixson, 1994; Dickinson et al., 1997; Maver and Bajcsy, 1993; 
Hlaváč et al., 1996; Chen and Li, 2002), but here the strategies for scanning an object or a 
scene are mostly given by the developer as well. Only recently has an effort been made to 
learn the strategies as well, for example with methods of reinforcement learning. But here 
again the autonomous emergence of strategies is not explored until the level of object 
recognition (Paletta and Pinz, 2000; Reinhold et al., 2000; Deinzer et al., 2001). To our 
knowledge no approach to object acquisition by active learning has been proposed up to 
now. The system we describe in this paper learns a view-based object representation 
adaptively without a given strategy via reinforcement learning. Methods for the control  
of reinforcement learning designs are summarised, e.g., in Sutton and Barto (1998), 
Kaelbling et al. (1996) and Russell and Norvig (2003). 

3 Components of the system 

In this section we describe the preprocessing of the acquired views, the calculation of 
correspondences between frames by tracking local feature descriptors, the data structure 
for the object representation, and the reconstruction of unfamiliar views which have not 
been scanned. These are the basic components of our system. The learning of a scan 
strategy is treated in Section 4. 

3.1 Preprocessing and view representation 

The results described in this paper have been obtained with a scanning system which is 
virtual only, i.e., which is not implemented on a hardware scanner yet. We simulate a 
scanner which rotates the camera around the object at a fixed distance oriented to the 
centre of the object base. For that purpose we recorded views of objects in distances of 
3.6° in both longitudinal and latitudinal directions on the upper hemisphere of the object, 
resulting in 2500 views per object (see Figure 3). Each view is represented by a graph, 
which covers the object in the image. The nodes of a graph are labelled with  
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Gabor wavelet responses, which describe the local surroundings of the node in the image. 
For the Gabor transform we use a set of wavelets with eight directions and four 
frequencies. The graphs are generated automatically from the images: first, the object is 
separated from the background by a segmentation algorithm described in Eckes and 
Vorbrüggen (1996), which is based on the grey level values of the image. Then a grid 
graph (Figure 1) is put on the resulting object segment.  

Figure 1 Grid graph 

 

3.2 Tracking local object features 

Corresponding object points between scanned views are obtained by tracking the nodes 
of a graph from frame to frame. They are required later for the view-based reconstruction 
of non-acquired views by morphing. The information stored at a node in the form of 
Gabor wavelet responses enables the node to be tracked to the next frame (Maurer and 
von der Malsburg, 1996). The grid graph shown in the left view of Figure 2 is tracked 
along the sequence to the view shown on the right. The similarity between two views can 
be expressed by the result of a similarity function between two graphs, which is based on 
the Gabor wavelet responses (Lades et al., 1993). 

Figure 2 Tracking of object points 

 

3.3 Object representation 

Assume a given scan path of an object. To obtain a sparse, view-based object 
representation, we select key views from this path and store either one original grid graph 
or one original and one tracked graph per key view. We start with the first view of the 
scan path. This is the first key view K0. Its original grid graph 0

orig
KG  is incorporated in the 
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object representation. Then it is tracked according to Section 3.2 along the scan path until 
the similarity between the tracked graph at the current view of the scan path and 0

orig
KG  

drops below a preset threshold. The tracked graph 1
track
KG  for this second key view K1 is 

also stored in the object representation. For K1 a new grid graph 1
orig
KG  is generated and 

incorporated into the representation as a second graph for this view as well. Then this 
graph is also tracked until the similarity to 1

orig
KG  drops again below the threshold, and so 

on. This means that for the first and the last key view of the scan path only one graph is 
stored ( 0

orig
KG  and track ,NKG  respectively), whereas for each other key view Kj, j = 1, ..., N – 1 

of the scan path two graphs track
jKG  and orig

jKG  are stored in the object representation.  
This ensures piecewise correspondences for local areas of the view hemisphere.  
The illustration in Figure 3 shows sample views of two objects and a possible scan path 
with three key views. 

Figure 3 View hemisphere with key views 

 

3.4 Reconstruction of non-acquired views 

The reconstruction of non-acquired views from the key views of a scan path has two 
functions. On the one hand, it serves as a test whether the relevant information on the 
object has been captured after the scan path has been learned. On the other hand, it is 
used for the calculation of the reward signal after each step of a scan episode.  
The correspondences provided by the tracking procedure (Section 3.2) enable us to apply 
a standard view morphing technique described in Peters (2002). An unfamiliar view is 
morphed from those two consecutive key views which are closest to it. To compare a 
morphed view to its original version an error erecon ∈ [0, 1] also described in Peters 
(2002) can be defined. In the example illustrated in Figure 4 the non-acquired view 
(7, 11) is reconstructed from the key views (3, 7) and (14, 7). It can be compared to the 
original view (7, 11). 



   

 

   

   
 

   

   

 

   

   118 G. Peters and T. Leopold    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 Reconstruction of non-acquired views 

 

4 Learning action patterns 

We apply Q-learning in our simulations. It works by estimating the values of state-action 

pairs. The Q-value is the expected discounted sum of future payoffs obtained by taking a 
particular action in a current state and following an optimal policy thereafter. Once these 
values have been learned, the optimal action from any state is the one with the highest  
Q-value. We apply Q-learning with a learning rate α = 1/3 and an ε-greedy policy with 

ε = 1/3, annealed by the factor 1/1.000001. In the beginning the agent chooses 
exploration, i.e., a random action, in one third of all steps and exploitation, i.e., an action 
based on the learned information, in two thirds of all steps. With ongoing processing  
we slowly decrease the probability for exploration for the benefit of exploitation.  
The Q-values are defined as follows:  

1 1( , ) ( , ) ( max ( , ) ( , )).t t t t t a t t ts a s a r s a s aα + += + + −Q Q Q Q  

with st the state, at the action, and rt+1 the reward at step t. As we currently store them in a 
table, the number of state-action-pairs has to be reasonably small. The definition of the 
state as the current position of the camera would yield a sufficiently small number of 
states. But this definition would not be effective enough for learning, because information 
of the scan history is lost. The scan history could be retained by defining a state of the 
environment by the complete path. This, in turn, would yield too many states to be stored 
in the Q-table (all possible paths). For these reasons we define a state as a vector of five 
values. The first value encodes the current position of the camera and the remaining four 
values describe the degree of unfamiliarity of the areas to the north, east, south, and west 
of the current position on the view hemisphere, respectively. By this definition similar 
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scan paths, which provide almost the same information on the object, are mapped to the 
same state. In the illustration in Figure 5 the hemisphere is quantised and projected to a 
plane. The position in the centre is the current position of the agent. For the areas to the 
north, east, south and west of the current position the degrees of unfamiliarity define the 
state of the agent. Positions on the diagonals which separate the areas are assigned to both 
adjacent areas.  

Figure 5 Hemisphere areas used for state definitions 

 

We calculate the degree of unfamiliarity of an area in the following way. To each 
unfamiliar position of an area we assign the distance from this unfamiliar position to the 
next position that has already been scanned. Then the value of an area is the sum of all 
values of unfamiliar positions in this area (Figure 6). The arrows depict the scan paths. 
The numbers are values of single positions within any of the four areas.  

Figure 6 Examples for unfamiliarity calculation 

 

The possible values of an area are quantised into five bins; 0 encodes very familiar areas, 
4 encodes very unfamiliar areas. For a further reduction of the number of states we also 
quantise the original view hemisphere, resulting in a raster of 20 × 5 views. Thus, a state 
of the reinforcement learning module consists of six components: x-position on the 
hemisphere (20 possible values), y-position (five possible values), and unfamiliarity  
of the areas in the four directions (five possible values each), resulting in a total of  
2000 states. 

Possible actions are the movement of the camera in one of the four above mentioned 
directions on the quantised view hemisphere.  

The reward signal rt+1 is calculated in the following way. Before the choice of the 
next action the agent predicts the view she would perceive if she performed the action. 
The prediction is calculated according to the morphing technique described in Section 3.4 
from the last two key views she has experienced so far. After the prediction the action is 
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carried out. The reward for this action is higher for smaller similarities between the 
predicted and the actual view. More concrete, the reward is calculated according to 
rt+1 = (–(erecon,t+1 – 1)16. The total return for one episode is the sum of the rewards received 
for each step of the episode.  

Each episode starts at position (0, 0) on the view hemisphere, which can be regarded 
as a canonical view. While the camera is moved, one position on the coarser raster of the 
quantised hemisphere the current graph is tracked according to Section 3.2. Key views 
are determined along the way as described in Section 3.3 providing a scan path with 
associated key views for each episode. An episode consists of 32 steps. This learning 
process is stopped when the scan path has stabilised. Finally, the quality of the learned 
path has to be assessed. To this end we randomly choose a set of 25 test views on the 
unquantised hemisphere. These views are reconstructed from the key views of the learned 
path as described in Section 3.4. Then a total reconstruction error, which is the mean of 
the single reconstruction errors erecon of all test views, gives information about the quality 
of the learned scan path.  

5 Results 

The method described above has been carried out for the ‘Tom’ object (Figure 3).  
The learned scan path stabilised after 2 million episodes and yielded a significantly lower 
total reconstruction error than achieved with random scan paths of equal length.  
The mean reconstruction error for 100 random paths is 9.2, whereas the error for the 
learned path is 5.8. A typical random path with 32 steps is shown in Figure 7. The inset 
shows the view hemisphere seen from above with view (0, 0) at the bottom. Only the key 
views of the path are displayed. Random paths have been generated using the proposed 
method with ε = 1.  

Figure 7  Key views of a random scan path 

 

In Figure 8 the key views of the stabilised, learned scan path are depicted. 
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Figure 8 Key views of the learned scan path 

 

In Figure 9 the total returns obtained for one episode are plotted on a logarithmic scale 
vs. the number of episodes that have been carried out so far. The returns seem to be 
monotonously increasing until the scan path has stabilised between episodes 106 and 107. 

Figure 9 Total returns for scan paths 
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The scan paths learned up to these episodes are displayed in Figure 10 illustrating the 
learning process. 

Figure 10 Scan paths learned up to certain episodes 

 

The resulting path has an even shape, going around the lower part of the view hemisphere 
from the front to the back, turning up and moving back to the front in the upper part of 
the hemisphere. Those views of the back of the object that have not been covered by the 
learned path are rather similar to the views where the agent turned up towards the top of 
the hemisphere. Thus, it seems to make sense not to incorporate these redundant views 
into a sparse object representation.  

We carried out experiments with an episode length of 36 steps as well. The shape of 
the resulting scan path for these experiments is similar to the one with a length of  
32 steps with the exception that it alternates its direction once more at the top of the 
hemisphere. But for the episodes with 32 steps the difference between learned and 
random paths in terms of the total reconstruction error is more obvious than for the 
episodes with 36 steps. 

6 Conclusions 

We have introduced an active vision system which automatically learns internal object 
representations for defined purposes. By adaption to its environment it develops  
goal-directed behaviour in the form of a strategy to scan an object in such a way that the 
reconstruction of non-acquired object views is possible. This results in an object-specific 
movement pattern of the scanner. Up to now we have demonstrated for only one object 
that the learned scan strategy is more suitable for the reconstruction of unfamiliar views 
of the scanned object than any of the tested random scan paths. We will test our system 
with other objects with different shapes in the future and also hope to learn characteristic 
scan paths for different object classes.  
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The system, as described, does not work in real-time. But we believe that the basic 
idea of the approach will enable real-time applications in the future. For that purpose we 
will, for example, replace the table-based Q-learning by an appropriate function 
approximation. (Then the restriction to paths of a preset length will also be superfluous.) 
In addition, we believe that once characteristic scan strategies for different object classes 
can be learned, the inspection of objects, e.g., for the purpose of recognition will be 
possible in real-time. Currently we are working on the transfer of our approach to a 
hardware system. We use an anthropomorphic robot with a manipulator arm which 
moves a camera in its gripper around an object placed on a table. In addition, we 
investigate the influence of different goals (such as the acquisition of a 3d model) on the 
resulting scan strategy. We believe that the proposed concept will result in an intelligent 
scanner which allows a more efficient acquisition and storage of objects. Possible 
applications are finding 3D models in data bases and learning, recognition, and grasping 
of objects in the area of service robotics.  
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